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Abstract— Classification with image sets is recently a com-
pelling technique for video-based face recognition. Previous
methods in this line mostly assume each image set is pure, i.e.,
containing well-aligned face images of the same subject, which
however is hardly satisfied in real-world applications due to
incorrect face detection, questionable tracking, or multiple faces
in a single image. This paper proposes a Probabilistic Nearest
Neighbor (ProNN) search method to enhance the robustness
of NN search against impure image sets by leveraging the
statistical distribution of the involved image sets. Specifically,
we represent image sets by affine hull, a well-recognized set
model, to account for the unseen appearances in each image set.
We further exploit a constraint that these unseen appearances
statistically follow some pre-specified distribution (Gaussian in
this work). Finally, in search of a pair of nearest neighbor points
(one per hull), at the same time their distance being minimized,
the probability of each point belonging to the same class as that
of its corresponding hull is maximized. The proposed ProNN
method is evaluated on three widely-studied public databases,
Honda/UCSD, YouTube Celebrities and Multiple Biometric
Grand Challenge (MBGC), under two Kkinds of experimental
settings where image sets are contaminated either with false
positive faces or images of other subjects. Extensive experiments
demonstrate the superiority of the proposed approach over
state-of-the-art methods.

I. INTRODUCTION

With the rapid progress of video technologies, image sets
are commonly available and can be easily collected by video
surveillance, multi-view cameras, photo albums or long term
observations. Compared with a single face image, richer
information is embedded in an image set as it can cover a
lot of variations of the person’s facial appearance. Therefore,
face recognition with image sets has attracted increasing
interest recently and demonstrated promising performance in
realistic environment [1]-[18]. For classification with face
image sets, both the gallery and probe samples are image
sets, each of which is assumed to contain facial images or
video frames belonging to one single person.

According to how to model the image sets, relevant
approaches mainly fall into four categories: statistical model
based methods [1]-[5] , linear subspace based methods [6]—
[9], nonlinear manifold based methods [10]-[14] and affine
subspace based methods [15]-[18].

Several works tend to model statistical nature of image
sets. In earlier years, researchers attempt to represent the
image set with some well studied probability density func-
tions, such as single Gaussian in [1] and Gaussian Mixture
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Fig. 1: Conceptual illustration of the proposed approach. H;,
H, and Hj are affine hulls (the polygons with solid lines)
formed by each of the three image sets (the cloud shapes)
respectively. In the figure, face images superimposed with
different colors denote different subjects. Since image set
1 contains an outlier sample, when matching it with other
image sets 2 and 3, nearest neighbor points selected based on
affine hull model (i.e. “NN”’) would cause a wrong match to
image set 2. In our approach “ProbNN”, with an additional
consideration of the statistical structure of the image sets, the
outlier in set 1 can be easily filtered out and a more accurate
affine hull model with shrinking region (bounded by dashed
red lines) can be formed which yields the correct match of
image set 1 to set 3.

model(GMM) in Manifold Density Method (MDM) [2].
The similarity between two distributions is then measured
by the classical Kullback-Leibler Divergence (KLD). More
recently, Wang et al. [3] propose a Covariance Discriminative
Learning(CDL) method to model the image set by its natural
second-order statistic, i.e. covariance matrix, and further
conduct discriminative learning on a Riemannian manifold.
While only covariance information is modeled in CDL, Lu et
al. [4] propose to combine multiple order statistics as features
of image sets, and develop a localized multi-kernel metric
learning (LMKML) algorithm for classification.

Rather than modeling the statistical nature of image sets,
linear subspace based methods make the assumption that
each image set spans a linear subspace. Specially, the Mutual
Subspace Method (MSM) [6] and Discriminant-analysis of
Canonical Correlations (DCC) [7] represent each image set
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as a single linear subspace and compute the principal angles
of two linear subspaces for classification. Grassmann Dis-
criminant Analysis (GDA) [8] and Grassmann Embedding
Discriminant Analysis (GEDA) [9] also model the image
sets as linear subspaces but perform classification on the
Grassmann manifold spanned by the subspaces according to
Riemannian geometry.

In the literature, non-linear manifold has also been em-
ployed to represent an image set. In Manifold-Manifold
Distance (MMD) [10] and Manifold Discriminant Analysis
(MDA) [11], the similarity between manifolds is converted
to integrating the distances between pair-wise subspaces.
Further, Cui er al. [12] adopt the similar set modeling
strategy, but attempt to align the image sets with a generic
reference sets for more precise local model matching. Chen
et al. [13] propose to measure the distance between two
image sets with the distance between two nearest local linear
subspaces searched by joint sparse approximation. In a more
recent work [14], deep reconstruction models are constructed
to automatically learn the underlying manifold structure.

Besides the above three trends, the affine subspace is pro-
posed to characterize the large variations in image sets, which
tends to represent the unseen appearances in each image set
via linear combinations of images in the set. For instance,
Affine Hull based Image Set Distance (AHISD) [15] and
Convex Hull based Image Set Distance (CHISD) [15] are
proposed to model each image set by an affine/convex hull
model respectively, and the dissimilarity between two hulls
are defined as the distance between a pair of nearest points
belonging to either hull respectively. However, the affine hull
model would fail when image sets of different classes have
intersections. To address the issue, Sparse Approximated
Nearest Points (SANP) [16] is proposed to generate a pair
of virtual nearest points respectively approximated by the
images in either set under sparse representation constraint.
More recently, Regularized Nearest Points (RNP) [18] is
proposed to approximate each image set by a regularized
affine hull model, which exploits a constraint to regularize
the structure of image sets. Further in [17] an Adaptive Multi
Convex Hull metric is presented to use multiple local convex
hulls to approximate an image set.

In real world applications, the image sets usually contain
images/frames of low-quality with complicated variations
in facial appearance due to changes in pose, expression
and illumination. Therefore, face image sets in real-world
applications might contain outliers such as non-faces (false
face detection), badly-aligned faces, and even other persons’
face images due to failure of tracking or the existence of
multiple faces in the original image/frame. None of the
methods mentioned above has ever explicitly considered
the outlier problem. Therefore, most of them suffer from
accuracy degradation to some extent when image sets are
contaminated by outliers.

To deal with the outliers in the image sets and achieve
robust classification of image sets, a Probabilistic Nearest
Neighbor (ProNN) Search method is proposed with consid-
eration of both the nearest neighbor distance and the statis-

tical structure of the image sets. Specifically, we represent
image sets by affine hull models to account for the unseen
appearances via the affine combination of the images in
each image set [15], [16]. Simultaneously, we characterize
the statistical structure of the facial appearances in each
set by making a natural assumption that they follow some
distribution. Finally, given two image sets, we discover a pair
of ProNNs, one per hull, satisfying two criteria: 1) they are
nearest points that can be virtual; 2) each of them has large
probability belonging to the class of most of the images in its
hull. Fig. 1 gives an intuitive explanation about the proposed
ProNN.

In sum, the contributions of our proposed method are as
follows. On the one hand, our method inherits the advantages
of affine hull model that can account for unseen appearances
in the form of affine combinations of sample images. On
the other hand, we propose a probability based approach
to enhance the robustness of affine hull model to outliers
that contaminate face image sets. It manifests the effect of
modeling statistical structure of each image set for robust
face image set classification. Finally, extensive experiments
have been conducted to demonstrate the superiority of our
proposed approach over state-of-the-art methods.

The rest of this paper is organized as follows. In Sec. II
we introduce our Probabilistic Nearest Neighbor (ProNN)
Search method in detail. Then Sec. III discusses about the
main distinctions between some most related previous works
and our proposed method. In Sec. IV, we compare the
performance of our method with state-of-the-art methods in
two groups of simulation experiments on three public face
databases respectively. Finally, conclusions with possible
future directions are summarized in Sec. V.

II. PROBABILISTIC NEAREST NEIGHBOR SEARCH

In this section, we first describe the conventional nearest
neighbor search methods based on the affine hull model.
Then we elaborate how to conduct Probabilistic Nearest
Neighbor (ProNN) Search. Finally, we present optimization
method of ProNN.

A. Nearest neighbor search based on the affine hull model

Given a total of N image sets, we denote X; =
{af,2h,...,xy } as the i-th set containing N; samples. X
belongs to one of the classes denoted by Class; and i, is
the d-dimensional feature vector of the k-th image in X;. An
image set can be characterized as an affine hull spanned by
samples [15]:

Then by using the sample mean u; = Ni chvzl zi, we
can parameterize the affine hull as follows:

Hi:{m:ui+Uivi|vi€Rl}. )

where U; = [u;1, ..., u;] is an orthonormal basis which is
obtained from the Singular Value Decomposition (SVD) of



x; = p + Uiy
-

minimize L2 distance between x; and x;

maximize probability of x; € Class; and x; € Class;

Fig. 2: An illustration of the Probabilistic Nearest Neighbors (ProNNs) taking two image sets as examples. Given two face
image sets X; and X, we represent the points in each of them with the affine hull model (p;,U;) and (u;,U;) which
are linear combinations of images in each set. The points in the two hulls are assumed to follow Gaussian distribution

¥;) respectively. Thus the ProNNs are searched by minimizing distance between neighbor points

and meanwhile maximizing probability of each point belonging to the same class of its hull.

[} — pts, ..., @, — p5]. Note that the directions correspond-
ing to near-zero singular values are discarded, leading to [
(I < N;) singular vectors in U.

According to [15], nearest neighbor search based on the
affine hull model tends to compute the affine-hull distance
between two sets by

Y,z

Following (3), we have y = p; + Usv;, 2 = pj + Ujvy,
then the optimization problem can be rewritten as follows,

min | + Uivi) = (5 + Ujvs)l3. - (4)

Vg

By defining U = (U;,—U;) and v = , the
optimization becomes a standard least squares pr;}élem
min ||[Uv + i — 153 (5)
and we can compute its analytical solution as follows:
v=UTU)'UT (1 — ) (6)

It follows that the distance between the two hulls can be
rewritten as ||(I — U(UTU)"*UT)(u; — w;)|. Finally a
simple NN classifer can be used to conduct classification.
Here we take Fig. 1 as an example. As shown in the
figure, we aim at classifying image set 1 containing an outlier
sample either to set 2 or set 3. According to affine hull based
NN search, set 1 is wrongly matched to set 2 due to the effect
of the outlier and that the affine hull model doesn’t take into
consideration of statistical structure of the set.

B. Probabilistic Nearest Neighbor Search

To enhance the robustness to outliers, we additionally take
statistical structure of each image set into consideration while
modeling the image set using affine hull.

For characterizing the statistical structure of each image
set, we make an assumption that points in each affine hull are
generated i.i.d from some distribution, which is assumed to
be Gaussian distribution here, and estimate the distribution
by samples in each set.

First we estimate the mean and covariance matrix by
image features for each set.
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where N (x|u;, ;) denotes a Gaussian distribution with
mean p; and covariance matrix Y;, and its Probability
Density Function (PDF) is:
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Assuming that for two points y € H; and z € H;, we have
y ~ N (z|pi, i), and similarly z ~ N (z|u;,%;). Then we
can express the probability of y € Class; and z € Class;
as:

P(y € Class;) oc N(y|pi, 34)
1 —
o exp {—Q(y — i) T (y — ,Ui):| ;
P(z € Class;) < N(z|u;,%;)
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We tend to maximize the probability of each point belong-
ing to the same class as the images in corresponding set as
follows:

max P(y € Class;);
y

(10)
max P(z € Class;).

The above two constraints, i.e., minimizing the distance
in (3) and maximizing the probability in (10), are combined
together to form a simple and direct objective function, which
can be minimized to discover a pair of nearest unseen points,
one per hull, with large probability belonging to the same
class as the images in corresponding set. Fig. 2 demonstrates
the basic scheme of our method.

Therefore, we search for a pair of ProNNs {y € H;,z €
H;} by the optimization problem below:

{y*,2"} = argmin J(y,2)

yEH;,z€H;

; (11)
= argmin dist(y, z)

yet, -en; P(y € Class;) - P(z € Class;)

Since y € H; and z € H;, we have y = p; + Ujv;, 2 =
i; + Ujv;. Then by feeding this into (11) and considering
(9), the objective function can be rewritten as follows:

J(0) = (i + Usoi) — (5 + Uzoy)ll3

1
- exp {2 WIUrS U + UJ.TUJ.szlUjvj]}

12)
= ||[Uv + pi — ;|3 - exp (;UTAU>
where v = | | LU = W.,-U) A =
vj
urs;tu;
UjE;U;

C. Solving and Optimization

To solve the optimization problem v* = arg min J(v), we

first derive the gradient of J(v) with respect to variable v:

0J(v) NUv+ i — pll3 exp (307 Av)
v 2

1
+ 2exp (2’UTAU> UT(Uv + pi — 1)

(A+ AT
(13)

Then we can exploit the output computed by (6) as an
initial value and solve the optimization problem by Conjugate
Gradient (CG) method. Thus we find a pair of ProNNs, and
the dissimilarity between sets can be defined as Euclidean
distance between this pair of ProNNs. Finally, classification
can be conducted by a simple Nearest Neighbor (NN)
classifier.

As shown in Fig. 1, with an additional consideration of the
statistical structure of image sets, the ProNN method filters
out the outlier in set 1 and forms a more accurate affine hull
model with shrinking region (bounded by dashed red lines)
which yields the correct match of image set 1 to set 3.

III. DISCUSSION

Here we give a discussion about similarities and differ-
ences between our approach and some related works.

A. Relation to other nearest neighbor search methods

Compared with other nearest neighbor search methods,
such as Affine Hull based Image Set Distance (AHISD) [15],
Convex Hull based Image Set Distance (CHISD) [15], Sparse
Approximated Nearest Point (SANP) [16] and Regularized
Nearest Points (RNP) [18], our approach also basically boils
down to computing distance between some samples which
are defined nearest. But we consider both nearest distance
and the statistical structure of image data in each set, which
makes our method more robust against outliers.

B. Relation to other statistical model based methods

Compared with other statistical model based methods,
such as Gaussian Density Matching (GDM) [1], Manifold
Density Method (MDM) [2] and Covariance Discriminative
Learning(CDL) [3], our approach also tends to model the
statistical structure of each image set. But we exploit the
proved efficient affine hull model to explicitly represent
the unseen appearances which do not appear in image
sets. Therefore, our probabilistic model can characterize
the underlying appearances in each set and simultaneously
represent the probability distribution of these underlying
appearances.

IV. EXPERIMENTS

In this section, we conduct experiments under two differ-
ent kinds of situations to evaluate the performance of our
approach when image sets are contaminated by containing
face detection false-alarm images or by including images
from other classes respectively.

A. Datasets and Settings

We evaluate the experimental performance of differen-
t methods on three widely studied public datasets: Hon-
da/UCSD [19], YouTube Celebrities [20] and Multiple Bio-
metric Grand Challenge (MBGC) [21], [22].

The Honda/UCSD database contains 59 video sequences
of 20 different persons. Each video covers large pose chang-
ing and expression variation, and the length of the videos
varies from 12 to 645 frames. The detected faces are resized
to 20 x 20 gray-scale images and pre-processed by histogram
equalization in order to eliminate lighting effects, following
the similar settings in previous works [3], [4], [11], [16].
Note that for more accurate evaluation, we conduct 5-fold
cross validation experiments and take one image set from
each subject as the gallery, and the rest sets as probes.

The YouTube Celebrities database is a quite challenging
and widely used video face dataset collected in real world
condition. It consists of 1910 video clips of 47 celebrities.
The clips have different numbers of frames and are mostly
low resolution and highly compressed. The detected faces
are resized and pre-processed similarly with those on Honda.
Following the setting in [3], [11], we conduct 10-fold cross
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Fig. 3: Examples of contaminated sets. Note that “Outliers
1”7 denotes detection errors, and “Outliers 2” denotes faces
from other classes.
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Fig. 4: The number of True Positive (TP) and False Positive
(FP) face images in 10 randomly picked sets from YouTube
contaminated by detection errors.

validation experiments, and in each fold, each subject has 3
randomly chosen image sets for gallery, and 6 for probes.

The MBGC database consists of 143 subjects walking
towards a camera in a variety of illumination conditions, and
the number of videos per subject ranges from 1 to 5. We take
subsets of the database containing at least k sequences per
subject as Sk, k = 2, 3,4. Following the similar settings in
[24], [25], we resize the gray-scale face images to 100 x 100
and conduct leave-one-out testing.

B. Comparison Results and Analysis

We compare our approach with several state-of-the-art
image set classification methods developed in recent years,
including Affine Hull based Image Set Distance (AHISD)
[15], Convex Hull based Image Set Distance (CHISD) [15],
Sparse Approximated Nearest Point (SANP) [16], Discrim-
inant Canonical Correlations (DCC) [7], Manifold Discrim-
inant Analysis (MDA) [11] and Covariance Discriminative
Learning(CDL) [3].

For fair comparison, we obtained the source code of all
methods from the original authors, and the important pa-
rameters followed the same recommendations in the original
references. Specifically, in AHISD and CHISD, we used their

linear version and retained 95% data energy by PCA. The
error penalty parameter in CHISD was set to C' = 100 as
in [15]. For SANP, the parameters were the same as [16].
For DCC, we divided the single gallery image set of each
object in Honda/UCSD into two subsets randomly which is
the same as [7] for computing within-class scatter matrix.
In MDA, the parameters were the same as [10]. For CDL,
we used KDA for discriminative learning following the same
setting as [3].

In order to verify the robustness, we evaluate experimental
performance under two kinds of situations where different
kinds of noise are added artificially. One situation is on image
sets contaminated by face detection errors which is quite
commonly encountered in practical conditions, the other
one is on image sets contaminated by images from other
classes to simulate group images or multiple faces in a video
frame. The examples of contaminated sets in Honda/UCSD,
YouTube Celebrities and MBGC are shown in Fig. 3.

1) Comparison results on sets contaminated by detection
errors: On the one hand, we use the fast multi-pose face
detection system in [23] to detect faces in frames of the three
databases, and thus the image sets contain both real faces
and false alarms as well. We randomly pick 10 sets from
YouTube and compare the number of True Positive (TP) and
False Positive (FP) face images of each set in Fig. 4. From
Fig. 4, the average portion of FP is as high as about 28% of
the total number of face detector output (TP + FP).

Besides, we remove these detection errors in Honda/UCSD
and YouTube manually to obtain clean image sets. Results
of the experiments conducted on these clean sets are shown
in Tab. L. It is obvious that ProNN achieves very competitive
performance with the state-of-the-art methods and performs
much better than the baseline affine hull method AHISD.

The recognition results on face image sets contaminated
by face detection errors are also shown in Tab. I. Note
that each reported rate is an average over multiple-fold
trials. The images of these databases are complex and have
large variations, especially in MBGC because of the low
resolution, high compression ratio and large illumination,
pose and expression changes of face images. Therefore, face
recognition on MBGC contaminated by detection errors is
relatively difficult and challenging, which leads to commonly
low identification rates by all the comparison methods in our
experiments. Nevertheless, from Tab. I, it is obvious that our
approach still performs reasonably well.

Compared with results of AHISD, CHISD and SANP,
which all model image sets similarly with our approach, but
do not consider structure of data, our ProNN performs much
better than these competitors on all of the three databases.
Moreover, our approach, as an unsupervised method, has
achieved comparable performance with the three supervised
methods, DCC, MDA and CDL.

2) Comparison results on sets contaminated by images
from other classes: On the other hand, we conduct sim-
ulation experiments to evaluate the performance of our
approach when image sets contain group photos. Specifically,
with the clean image sets of Honda/UCSD and YouTube



TABLE I: Identification rates on face image sets contaminated by face detection errors.

N‘ AHISD [15] ‘ CHISD [15] ‘ SANP [16] ‘ DCC [7] ‘ MDA [11] ‘ CDL [3] ‘ ProNN ‘

Hond Clean 0.892 0.908 0.928 0.867 0.933 0.969 0.995
onda
Noise 0.651 0.662 0.601 0.682 0.657 0.742 0.764
Clean 0.637 0.665 0.684 0.668 0.670 0.697 0.671
YouTube
Noise 0.317 0.312 0.276 0.477 0.482 0.499 0.493
S1 0.181 0.193 0.247 0.174 0.257 0.292 0.382
MBGC Sa 0.182 0.200 0.263 0.182 0.291 0.346 0.394
Ss3 0.204 0.222 0.275 0.188 0.324 0.371 0.426
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Fig. 5: Identification rates on the Honda/UCSD database contaminated by images from other classes. Here, “N_G” is the
experimental scenario where only gallery is contaminated, “N_P” denotes that only probe is contaminated, and “N_G-+P”
denotes both are contaminated. The gallery and/or probe sets are contaminated by 1, 2 or 3 images (denoted as “-1/-2/-3”
in the figure) from each of all the other classes. Note that each reported rate is an average over multiple folds.
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TABLE II: Computation time (seconds) of different methods on the Honda/UCSD database for training and testing.

] | AHisD [15) | CHISD [15] | SANP [16] | DCC [7] | MDA [11] [ CDL[3] [ ProNN |

Training N/A N/A N/A

3.48 491 1.88 N/A

Testing 5.57 6.57 61.03

1.47 6.44 1.19 7.41

Celebrities database, we corrupt them by adding images from
other classes, as done in [3]. The recognition results are
shown in Fig. 5 and Fig. 6. Note that each reported rate
is an average over multiple-fold trials. Here, “N_G” is the
experimental setting where only gallery face image sets are
contaminated, “N_P” denotes that only probe face image
sets are contaminated, and “N_G+P” denotes they are both
contaminated. The gallery and/or probe face image sets are
contaminated by 1, 2 or 3 images (denoted as “-1/-2/-3” in
the figure) from each of the image sets belonging to other
classes.

From the comparison results shown in Fig. 5 and Fig. 6, it
is obvious that our method gives better performance across
different types of noise on both databases except in N_G+P
with 1 image/class on YouTube where CDL obtains a higher
rate of 52.2% compared with 52.0% of our approach. Note

that CDL also models statistical nature of image sets. From
the comparison results, it can be concluded that robustness
against outliers can be enhanced by taking the statistical
structure of data into consideration.

Comparing the accuracies when different number of im-
ages per class are added to contaminate the gallery and/or
the probe set, we can find that our ProNN method has a
smaller decline scope as the number of outliers increases,
and it performs robust classification even when a relatively
large number of noises are contained.

Lastly, we compared the computational complexity of
different methods on the Honda/UCSD database, where each
fold contains 20 training face image sets and 39 testing face
image sets belonging to 20 subjects. The experiments are
conducted on an Intel i7-3770, 3.40 GHz PC. Since our
approach is not a discriminative method, training stage is



not involved. For testing, we report the time of matching
one probe image set against 20 gallery image sets. The time
cost is shown in Tab. II. We can see that the computational
time of our approach is comparable to the state-of-the-art
methods.

V. CONCLUSIONS

This paper has proposed a Probabilistic Nearest Neighbor
(ProNN) search method for robust image set classification.
We attempt to enhance the robustness against outliers by
considering both nearest distance and the statistical structure
of each face image set. We represent image sets by the
affine hull models to account for the underlying appearances
and simultaneously characterize the statistical structure of
these appearances by making a natural assumption that they
follow some distribution. In our current study, the distribution
function is simply assumed as a Gaussian distribution and
was estimated by samples contained in the image sets. By
minimizing the derived objective function using Conjugate
Gradient (CG) algorithm, we search for ProNNs, which en-
hances the robustness against outliers and better characterizes
the dissimilarity between image sets.

To evaluate the performance of our approach, we have
conducted extensive experiments under simulation situations
when image sets are contaminated with different types of
noises respectively. The experiments have demonstrated the
superiority of the proposed approach over state-of-the-art
methods.

Currently we only make a simple prior assumption that
images are generated i.i.d from some distribution which
might not be always met in real applications. In the future,
we will explore more flexible models to characterize the
statistical distribution of the image set, such as kernel density
estimation. Furthermore, the simple yet appealing idea of
probabilistic set modeling can also be extended to work
with other nearest neighbor search methods, and even to be
incorporated into more sophisticated set models.
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